Hydrovolcanic activity in Okmok Caldera predominated on the crater floor during approximately the first 775 years after the caldera collapsed at 2050 yr. B.P. Interactions between rising magma and shallow water (<100 m) controlled the development of lithofacies observed in the early post-caldera deposits. The distinctive lithofacies reflect the eruptive processes active and Cones C and D, composite tuff, lava flow, and cinder cones, breached the surface of a lake which once covered the caldera floor. Three phases of eruptive activity constructed Cone D (and likely Cone C): first, a subaqueous cycle built the underlying pile now mostly buried; second, an emergent phase dispersed the products away from the vent producing the broad platform on which the cinder cones are perched; and finally, alternating subaerial strombolian and hawaiian phases built the edifices to their culminating heights. Radiocarbon dates provide constraining ages for a catastrophic flood that emptied the $4.3 \times 10^9$ m$^3$ caldera lake and exposed the subaqueous lithofacies.